Current state
This commit is contained in:
0
scan/__init__.py
Normal file
0
scan/__init__.py
Normal file
117
scan/contours.py
Normal file
117
scan/contours.py
Normal file
@@ -0,0 +1,117 @@
|
||||
# SPDX-License-Identifier: MIT
|
||||
# Copyright (c) 2019 Akumatic
|
||||
|
||||
import cv2, imutils, numpy
|
||||
from . import utils
|
||||
|
||||
######################
|
||||
# Contour operations #
|
||||
######################
|
||||
|
||||
def find_contours (
|
||||
image: numpy.ndarray,
|
||||
mode: int = cv2.RETR_LIST,
|
||||
method: int = cv2.CHAIN_APPROX_SIMPLE
|
||||
) -> list:
|
||||
""" Find all contours of the filtered image
|
||||
|
||||
Args:
|
||||
image (ndarray):
|
||||
the filtered image
|
||||
|
||||
Returns:
|
||||
A list containing contour data
|
||||
"""
|
||||
cnts = cv2.findContours(image.copy(), mode, method)
|
||||
return imutils.grab_contours(cnts)
|
||||
|
||||
def find_boxes (
|
||||
contours: list,
|
||||
thres_area: int = 500,
|
||||
pad_ratio: float = 0.05
|
||||
) -> (list, list):
|
||||
""" Find contours that resemble a box
|
||||
|
||||
Args:
|
||||
contours (list):
|
||||
a list containing contour data
|
||||
|
||||
Returns:
|
||||
A list containing the box contours
|
||||
"""
|
||||
boxes = list()
|
||||
for c in contours:
|
||||
area = cv2.contourArea(c)
|
||||
perimeter = cv2.arcLength(c, True)
|
||||
shape_factor = utils.circularity(area, perimeter)
|
||||
|
||||
if 0.7 < shape_factor < 0.85 and area >= thres_area:
|
||||
boxes.append(c)
|
||||
|
||||
return boxes
|
||||
|
||||
def find_center (
|
||||
contours: list
|
||||
) -> list:
|
||||
""" Find the center coordinates of all given contours.
|
||||
|
||||
Args:
|
||||
contours (list):
|
||||
A list containing contour data
|
||||
|
||||
Returns:
|
||||
A list containing the center coordinates and the contour as tuples
|
||||
(x, y, contour).
|
||||
"""
|
||||
centers = []
|
||||
for contour in contours:
|
||||
m = cv2.moments(contour)
|
||||
try:
|
||||
x = int(m["m10"] / m["m00"])
|
||||
y = int(m["m01"] / m["m00"])
|
||||
centers.append((x, y, contour))
|
||||
except ZeroDivisionError:
|
||||
pass
|
||||
return centers
|
||||
|
||||
def filter_centers (
|
||||
coords: list,
|
||||
radius: int
|
||||
):
|
||||
""" Removes all but one entry in circles given by coordinates and radius
|
||||
|
||||
Args:
|
||||
coords (list):
|
||||
a list containing tuples of coordinates (x, y)
|
||||
radius (float):
|
||||
the radius around a center where no other center should be
|
||||
"""
|
||||
a = 0
|
||||
|
||||
while a < len(coords):
|
||||
b = a + 1
|
||||
while b < len(coords):
|
||||
if utils.distance(coords[a][:2], coords[b][:2]) <= radius:
|
||||
del coords[b]
|
||||
else:
|
||||
b += 1
|
||||
a += 1
|
||||
|
||||
def dist_center_topleft (
|
||||
contour: numpy.ndarray,
|
||||
center: tuple
|
||||
) -> float:
|
||||
""" Calculates the distance from the center of a given contour to it's
|
||||
top left corner
|
||||
|
||||
Args:
|
||||
contour (ndarray):
|
||||
The contour data
|
||||
center (tuple):
|
||||
A tuple containing the center coordinates (x, y)
|
||||
|
||||
Returns:
|
||||
A float with the distance from center to the top left corner as value
|
||||
"""
|
||||
x, y, _, _ = cv2.boundingRect(contour)
|
||||
return utils.distance((x, y), center[:2])
|
207
scan/eval.py
Normal file
207
scan/eval.py
Normal file
@@ -0,0 +1,207 @@
|
||||
# SPDX-License-Identifier: MIT
|
||||
# Copyright (c) 2019 Akumatic
|
||||
|
||||
from . import utils
|
||||
|
||||
def evaluate (
|
||||
centers: list,
|
||||
n: int,
|
||||
radius: int
|
||||
) -> list:
|
||||
""" Evaluates the given data
|
||||
|
||||
Args:
|
||||
centers (list):
|
||||
contains tuples with coordinates and the black-pixel-ratio
|
||||
(x, y, ratio)
|
||||
n (int):
|
||||
the number of possible answers per question
|
||||
radius (int):
|
||||
the radius of the circle around a box
|
||||
|
||||
Returns:
|
||||
A list containings lists with evaluated answers
|
||||
"""
|
||||
start_of_file, _ = utils.find_closest_element(centers, (0,0))
|
||||
|
||||
# detect distance to next field on the right side
|
||||
point_1 = start_of_file
|
||||
point_r = find_next(centers, point_1, 2* radius, "r")
|
||||
dist_r = utils.distance(point_1[:2], point_r[:2])
|
||||
|
||||
# detect distance to next field below
|
||||
point_d = find_next(centers, point_1, 2 * radius, "d")
|
||||
dist_d = utils.distance(point_1[:2], point_d[:2])
|
||||
|
||||
# detect distance to the next set of answers
|
||||
for i in range(n - 2):
|
||||
point_r = find_next(centers, point_r, dist_r, "r")
|
||||
|
||||
point_3 = find_next(centers, point_r, 3 * radius, "r", max_dist=dist_r)
|
||||
if point_3 is not None:
|
||||
dist_set = utils.distance(start_of_file, point_3)
|
||||
else:
|
||||
dist_set = None
|
||||
|
||||
answers = eval_set(start_of_file, centers, n, dist_r, dist_d)
|
||||
if dist_set is not None:
|
||||
cur = find_next(centers, start_of_file, dist_set, "r", max_dist = radius)
|
||||
while cur is not None:
|
||||
answers += eval_set(cur, centers, n, dist_r, dist_d)
|
||||
cur = find_next(centers, cur, dist_set, "r", max_dist = radius)
|
||||
|
||||
return answers
|
||||
|
||||
def eval_set (
|
||||
start: tuple,
|
||||
centers: list,
|
||||
n: int,
|
||||
dist_r: int,
|
||||
dist_d: int
|
||||
) -> list:
|
||||
""" Evaluates a set of answers
|
||||
|
||||
Args:
|
||||
start (tuple):
|
||||
Containing the coordinates of the top left answer of a set
|
||||
centers (list):
|
||||
contains tuples with coordinates and the black-pixel-ratio
|
||||
(x, y, ratio)
|
||||
n (int):
|
||||
the number of possible answers per question
|
||||
dist_r (int):
|
||||
the horizontal distance between two columns of answers
|
||||
dist_d (int):
|
||||
the vertical distance between two rows of answers
|
||||
|
||||
Returns:
|
||||
A list containing all evaluated data
|
||||
"""
|
||||
result = []
|
||||
result.append(eval_row(start, centers, n, dist_r))
|
||||
|
||||
cur = start
|
||||
while cur != None:
|
||||
cur = find_next(centers, cur, dist_d, "d", max_dist=dist_r / 2)
|
||||
if cur is not None:
|
||||
result.append(eval_row(cur, centers, n, dist_r))
|
||||
return result
|
||||
|
||||
def eval_row (
|
||||
start: tuple,
|
||||
centers: int,
|
||||
n: int,
|
||||
dist_r: int
|
||||
) -> list:
|
||||
""" Evaluates a row of a set of answers with length n
|
||||
|
||||
Args:
|
||||
start (tuple):
|
||||
Containing the coordinates of the top left answer of a set
|
||||
centers (list):
|
||||
contains tuples with coordinates and the black-pixel-ratio
|
||||
(x, y, ratio)
|
||||
n (int):
|
||||
the number of possible answers per question
|
||||
dist_r (int):
|
||||
the horizontal distance between two columns of answers
|
||||
|
||||
Returns:
|
||||
A list containing all evaluated answer data from a given row
|
||||
"""
|
||||
result = []
|
||||
result.append(rate_black_pixel_ratio(start[2]))
|
||||
|
||||
cur = start
|
||||
for i in range(n - 1):
|
||||
cur = find_next(centers, cur, dist_r, "r")
|
||||
result.append(rate_black_pixel_ratio(cur[2]))
|
||||
|
||||
return result
|
||||
|
||||
def rate_black_pixel_ratio (
|
||||
ratio: int,
|
||||
thres_1: int = 20,
|
||||
thres_2: int = 50
|
||||
) -> int:
|
||||
""" Evaluates the given black-pixel-ratio and returns the detected marking.
|
||||
|
||||
Args:
|
||||
ratio (int):
|
||||
the ratio of black pixels compared to total pixels
|
||||
thres_1 (int):
|
||||
threshold for checked boxes
|
||||
thres_2 (int):
|
||||
threshold for corrected boxes
|
||||
|
||||
Returns:
|
||||
-1 if a box is filled
|
||||
1 if a box is checked
|
||||
0 if a box is empty
|
||||
"""
|
||||
if ratio >= thres_2:
|
||||
return -1 # corrected box
|
||||
if ratio >= thres_1:
|
||||
return 1 # checked
|
||||
else: # empty box
|
||||
return 0
|
||||
|
||||
def find_next (
|
||||
centers: list,
|
||||
cur: tuple,
|
||||
dist: int,
|
||||
dir: str,
|
||||
max_dist: int = None
|
||||
):
|
||||
""" Finds the next point in a given direction with a given distance
|
||||
|
||||
Args:
|
||||
centers (list):
|
||||
contains tuples with coordinates and the black-pixel-ratio
|
||||
(x, y, ratio)
|
||||
cur (tuple):
|
||||
the current point
|
||||
dist (int):
|
||||
approximated distance to the next point
|
||||
dir (str):
|
||||
direction of the distance. can be either "r" or "d"
|
||||
max_dist (int):
|
||||
max distance to be allowe
|
||||
|
||||
Returns:
|
||||
returns the next found point.
|
||||
if max_dist is given, returns None if distance > max_dist
|
||||
"""
|
||||
if dir == "r":
|
||||
e, d = utils.find_closest_element(centers, (cur[0] + dist, cur[1]))
|
||||
|
||||
elif dir == "d":
|
||||
e, d = utils.find_closest_element(centers, (cur[0], cur[1] + dist))
|
||||
|
||||
if max_dist is None or d <= max_dist:
|
||||
return e
|
||||
return None
|
||||
|
||||
def compare(
|
||||
data_a: list,
|
||||
data_b: list
|
||||
):
|
||||
""" Compares two sets of evaluated data with the same
|
||||
|
||||
Args:
|
||||
data_a (list):
|
||||
data set A
|
||||
data_b (list):
|
||||
data set B
|
||||
|
||||
Returns:
|
||||
A String "Correct/Total Answers" and the percentage
|
||||
"""
|
||||
# asserts the number of questions is the same
|
||||
assert len(data_a) == len(data_b)
|
||||
cnt = 0
|
||||
for i in range(len(data_a)):
|
||||
if data_a[i] == data_b[i]:
|
||||
cnt += 1
|
||||
|
||||
return (f"{cnt}/{len(data_a)}", cnt / len(data_a) * 100)
|
143
scan/image.py
Normal file
143
scan/image.py
Normal file
@@ -0,0 +1,143 @@
|
||||
# SPDX-License-Identifier: MIT
|
||||
# Copyright (c) 2019 Akumatic
|
||||
|
||||
import cv2, imutils, numpy
|
||||
|
||||
def threshold (
|
||||
image: numpy.ndarray,
|
||||
threshold: int = 200,
|
||||
) -> numpy.ndarray:
|
||||
""" Converts given image to black and white
|
||||
|
||||
Args:
|
||||
image (ndarray):
|
||||
the image to be processed
|
||||
threshold (int):
|
||||
the threshold at which every pixel value should be set to 255
|
||||
"""
|
||||
_, img_binary = cv2.threshold(image, threshold, 255, cv2.THRESH_BINARY)
|
||||
return img_binary
|
||||
|
||||
def blur (
|
||||
image: numpy.ndarray,
|
||||
kernel_size: int = 7
|
||||
) -> numpy.ndarray:
|
||||
""" Filters the given picture by converting it to gray scale and
|
||||
applying gaussian blur filter
|
||||
|
||||
Args:
|
||||
image (ndarray):
|
||||
the image to be processed
|
||||
kernel_size (int):
|
||||
the size of the kernel for the gaussian blur
|
||||
|
||||
Returns:
|
||||
A ndarray containing the filtered image
|
||||
"""
|
||||
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
|
||||
return cv2.GaussianBlur(gray, (kernel_size, kernel_size), 0)
|
||||
|
||||
def edge_detection (
|
||||
image: numpy.ndarray
|
||||
) -> numpy.ndarray:
|
||||
""" Applies canny edge detection on a given image
|
||||
|
||||
Args:
|
||||
image (ndarray):
|
||||
the image to be processed
|
||||
|
||||
Returns:
|
||||
A ndarray containing the image after canny detection
|
||||
"""
|
||||
return imutils.auto_canny(image)
|
||||
|
||||
def draw_circles (
|
||||
image: numpy.ndarray,
|
||||
centers: list,
|
||||
color: tuple,
|
||||
radius: int = 3,
|
||||
thickness: int = 2
|
||||
) -> numpy.ndarray:
|
||||
""" Draws the centers of given contures with the given color,
|
||||
(size, thickness)
|
||||
|
||||
Args:
|
||||
image (ndarray):
|
||||
the image to be modified
|
||||
centers (list):
|
||||
a list containing the center coordinates as tuples (x, y)
|
||||
color (tuple):
|
||||
the color coded in BGR color scale
|
||||
radius (int):
|
||||
size of the circles to be drawn
|
||||
thickness (int):
|
||||
thickness of the borders of all circles to be drawn
|
||||
"""
|
||||
for center in centers:
|
||||
cv2.circle(img=image, center=center[:2], radius=radius,
|
||||
color=color,thickness=thickness)
|
||||
|
||||
return image
|
||||
|
||||
def draw_contours (
|
||||
image: numpy.ndarray,
|
||||
contours: list,
|
||||
color: tuple
|
||||
) -> numpy.ndarray:
|
||||
""" Draws the given contours in the given picture with the given color.
|
||||
Args:
|
||||
image (ndarray):
|
||||
the image to be modified
|
||||
contours (list):
|
||||
A list containing contour data
|
||||
color (tuple):
|
||||
the color coded in BGR color scale
|
||||
|
||||
Returns:
|
||||
the modified image as a multidimensional array
|
||||
"""
|
||||
img = cv2.drawContours(image, contours, -1, color, 3)
|
||||
return img
|
||||
|
||||
|
||||
def ratio_black (
|
||||
image: numpy.ndarray,
|
||||
center: tuple,
|
||||
radius: int,
|
||||
) -> int:
|
||||
""" Calculates the ratio of black pixels in a given square area.
|
||||
|
||||
Args:
|
||||
image (ndarray):
|
||||
the image
|
||||
center (tuple):
|
||||
|
||||
radius (int):
|
||||
|
||||
|
||||
Returns:
|
||||
The ratio of black pixels to all pixels
|
||||
"""
|
||||
cnt_black = 0
|
||||
cnt_pixel = 0
|
||||
for x in range(center[0] - radius, center[0] + radius):
|
||||
for y in range(center[1] - radius, center[1] + radius):
|
||||
if image[y, x] == 0:
|
||||
cnt_black += 1
|
||||
cnt_pixel += 1
|
||||
|
||||
return int(cnt_black / cnt_pixel * 100)
|
||||
|
||||
def eval_image (
|
||||
image: numpy.ndarray,
|
||||
data: list,
|
||||
radius: int
|
||||
) -> numpy.ndarray:
|
||||
|
||||
checked = [d[:2] for d in data if d[2] >= 20]
|
||||
corrected = [d[:2] for d in data if d[2] >= 50]
|
||||
|
||||
draw_circles(image, checked, (0,255,0), radius, thickness=4)
|
||||
draw_circles(image, corrected, (255,0,0), radius, thickness=4)
|
||||
|
||||
return image
|
280
scan/io.py
Normal file
280
scan/io.py
Normal file
@@ -0,0 +1,280 @@
|
||||
# SPDX-License-Identifier: MIT
|
||||
# Copyright (c) 2019 Akumatic
|
||||
|
||||
import cv2, argparse, numpy
|
||||
|
||||
##############
|
||||
# Exceptions #
|
||||
##############
|
||||
|
||||
class UnsupportedFileType(Exception):
|
||||
pass
|
||||
|
||||
class UnsupportedNumberOfPages(Exception):
|
||||
pass
|
||||
|
||||
class MissingArg(Exception):
|
||||
pass
|
||||
|
||||
####################
|
||||
# Argument Parsing #
|
||||
####################
|
||||
|
||||
def parse_args (
|
||||
) -> argparse.Namespace:
|
||||
""" Parser for cli arguments.
|
||||
|
||||
Returns:
|
||||
A Namespace containing all parsed data
|
||||
"""
|
||||
# The parser itself
|
||||
parser = argparse.ArgumentParser(add_help=False)
|
||||
parser.description = "Evaluates single choice sheets"
|
||||
|
||||
# Groups for ordering arguments in help command
|
||||
grp_req_excl = parser.add_argument_group("required arguments, mutually exclusive")
|
||||
grp_req = parser.add_argument_group("required arguments")
|
||||
grp_opt = parser.add_argument_group("optional arguments")
|
||||
|
||||
#########################
|
||||
##### Required Args #####
|
||||
#########################
|
||||
|
||||
# Input path - either an url or a path to a local file
|
||||
io_grp = grp_req_excl.add_mutually_exclusive_group(required=True)
|
||||
io_grp.add_argument("-u", "--url", dest="url",
|
||||
help="URL to the image or pdf to be evaluated.")
|
||||
io_grp.add_argument("-f", "--file", dest="file",
|
||||
help="path to the image or pdf to be evaluated.")
|
||||
|
||||
# required arg for number of answers each question
|
||||
grp_req.add_argument("-n", "--num", dest="num", required=True,
|
||||
type=_arg_int_pos, help="number of answers per question")
|
||||
|
||||
#########################
|
||||
##### Optional Args #####
|
||||
#########################
|
||||
|
||||
# help message. Added manually so it is shown under optional
|
||||
grp_opt.add_argument("-h", "--help", action="help", help="show this help message and exit")
|
||||
|
||||
# path to store the result picture to
|
||||
grp_opt.add_argument("-i", "--iout", dest="iout",
|
||||
help="path for the output picture to be stored.")
|
||||
|
||||
# path to store the result list to
|
||||
grp_opt.add_argument("-d", "--dout", dest="dout",
|
||||
help="path for the output data to be stored.")
|
||||
|
||||
# path to compare results generated by the program with data stored in a file
|
||||
grp_opt.add_argument("-c", "--compare", dest="comp",
|
||||
help="compares the calculated result to a given result")
|
||||
|
||||
# plotting all steps
|
||||
grp_opt.add_argument("-p", "--plot", dest="plot", action="store_true",
|
||||
help="plots every single step")
|
||||
|
||||
return parser.parse_args()
|
||||
|
||||
def _arg_int_pos (
|
||||
value: str
|
||||
) -> int:
|
||||
""" Trying to parse the input argument into a positive value.
|
||||
|
||||
Args:
|
||||
value (str):
|
||||
The value to be checked
|
||||
|
||||
Returns:
|
||||
The checked and casted value
|
||||
|
||||
Raises:
|
||||
ArgumentTypeError:
|
||||
Raises an ArgumentTypeError if
|
||||
- value is not a number
|
||||
- value is not positive
|
||||
"""
|
||||
try:
|
||||
int_value = int(value)
|
||||
except ValueError:
|
||||
raise argparse.ArgumentTypeError(f"{value} is not a number.")
|
||||
|
||||
if int_value <= 0:
|
||||
raise argparse.ArgumentTypeError(f"{value} is not a positive integer.")
|
||||
return int_value
|
||||
|
||||
#################
|
||||
# File Handling #
|
||||
#################
|
||||
|
||||
def read_image (
|
||||
path: str = None,
|
||||
url: str = None
|
||||
) -> numpy.ndarray:
|
||||
""" Opens the image if file extension is supported.
|
||||
|
||||
Supported file extensions are .jpg, .jpeg, .png and .pdf
|
||||
|
||||
Args:
|
||||
path (String): Path to local file
|
||||
url (String): URL to file
|
||||
|
||||
Returns:
|
||||
A ndarray containing the image data
|
||||
"""
|
||||
# Neither URL nor path provied
|
||||
if url is None and path is None:
|
||||
raise MissingArg
|
||||
|
||||
# Get data and mime type
|
||||
if url:
|
||||
import requests
|
||||
try:
|
||||
response = requests.get(url, stream=True).raw
|
||||
ext = response.headers["Content-Type"].split("; ")[0]
|
||||
except requests.exceptions.ConnectionError as e:
|
||||
raise e
|
||||
|
||||
else: # path
|
||||
import magic
|
||||
try:
|
||||
with open(path, "rb") as f:
|
||||
file = f.read()
|
||||
ext = magic.from_buffer(file, mime=True).split("; ")[0]
|
||||
except FileNotFoundError as e:
|
||||
raise e
|
||||
|
||||
# If file is image or pdf, parse to cv2
|
||||
if ext in ("image/png", "image/jpeg"):
|
||||
if url:
|
||||
data = numpy.asarray(bytearray(response.read()))
|
||||
else:
|
||||
data = numpy.asarray(bytearray(file))
|
||||
|
||||
return cv2.imdecode(data, cv2.IMREAD_COLOR)
|
||||
|
||||
elif ext in ("application/pdf"):
|
||||
import pdf2image
|
||||
if url:
|
||||
images = pdf2image.convert_from_bytes(response.read())
|
||||
else:
|
||||
images = pdf2image.convert_from_bytes(file)
|
||||
|
||||
# only pdf with one page are supported
|
||||
if len(images) != 1:
|
||||
raise UnsupportedNumberOfPages
|
||||
|
||||
data = numpy.asarray(images[0])
|
||||
return cv2.cvtColor(data, cv2.COLOR_RGB2BGR)
|
||||
|
||||
else:
|
||||
raise UnsupportedFileType(ext)
|
||||
|
||||
def write_image (
|
||||
image: numpy.ndarray,
|
||||
path: str,
|
||||
):
|
||||
""" Stores an image to the given path.
|
||||
If the directory does not exist, it tries to create it.
|
||||
|
||||
Args:
|
||||
image (ndarray):
|
||||
the image to be stored
|
||||
path (String): Path for file to be stored
|
||||
"""
|
||||
import os
|
||||
path_abs = os.path.abspath(path)
|
||||
path_dir = os.path.dirname(path_abs)
|
||||
|
||||
if not os.path.exists(path_dir):
|
||||
os.makedirs(path_dir)
|
||||
|
||||
cv2.imwrite(path_abs, image)
|
||||
|
||||
def load_results (
|
||||
path: str
|
||||
):
|
||||
import json
|
||||
with open(path, "r") as f:
|
||||
return json.loads(f.read())
|
||||
|
||||
def store_results (
|
||||
data: list,
|
||||
path: str
|
||||
):
|
||||
import json
|
||||
with open(path, "w+") as f:
|
||||
f.write(json.dumps(data))
|
||||
|
||||
############
|
||||
# Plotting #
|
||||
############
|
||||
|
||||
def plot (
|
||||
orig: numpy.ndarray,
|
||||
blur: numpy.ndarray,
|
||||
thres: numpy.ndarray,
|
||||
edges: numpy.ndarray,
|
||||
boxes: numpy.ndarray,
|
||||
center_boxes: numpy.ndarray,
|
||||
checked: numpy.ndarray,
|
||||
end: numpy.ndarray,
|
||||
):
|
||||
""" Plots up to 8 given data.
|
||||
All Subplot consists of the following:
|
||||
|
||||
- plt.subplot => subplot identifier
|
||||
- plt.xticks, plt.yticks => hide axis labels
|
||||
- plt.title => Title to be shown
|
||||
- plt.imshow => shows given image in the subplot
|
||||
- since opencv image is in BGR, it needs to convert to RGB first
|
||||
"""
|
||||
import matplotlib.pyplot as plt
|
||||
from imutils import opencv2matplotlib
|
||||
idx = 240
|
||||
|
||||
# Subplot y = 1, x = 1
|
||||
plt.subplot(idx + 1)
|
||||
plt.xticks([]), plt.yticks([])
|
||||
plt.title("Original")
|
||||
plt.imshow(opencv2matplotlib(orig))
|
||||
|
||||
# Subplot y = 1, x = 2
|
||||
plt.subplot(idx + 2)
|
||||
plt.xticks([]), plt.yticks([])
|
||||
plt.title("Blur")
|
||||
plt.imshow(opencv2matplotlib(blur))
|
||||
|
||||
# Subplot y = 1, x = 3
|
||||
plt.subplot(idx + 3)
|
||||
plt.xticks([]), plt.yticks([])
|
||||
plt.title("Threshold")
|
||||
plt.imshow(opencv2matplotlib(thres))
|
||||
|
||||
plt.subplot(idx + 4)
|
||||
plt.xticks([]), plt.yticks([])
|
||||
plt.title("Canny Edge")
|
||||
plt.imshow(opencv2matplotlib(edges))
|
||||
|
||||
plt.subplot(idx + 5)
|
||||
plt.xticks([]), plt.yticks([])
|
||||
plt.title("Boxes")
|
||||
plt.imshow(opencv2matplotlib(boxes))
|
||||
|
||||
plt.subplot(idx + 6)
|
||||
plt.xticks([]), plt.yticks([])
|
||||
plt.title("Center of Boxes")
|
||||
plt.imshow(opencv2matplotlib(center_boxes))
|
||||
|
||||
|
||||
plt.subplot(idx + 7)
|
||||
plt.xticks([]), plt.yticks([])
|
||||
plt.title("Areas to be checked")
|
||||
plt.imshow(opencv2matplotlib(checked))
|
||||
|
||||
plt.subplot(idx + 8)
|
||||
plt.xticks([]), plt.yticks([])
|
||||
plt.title("Found corrected and checked boxes")
|
||||
plt.imshow(opencv2matplotlib(end))
|
||||
|
||||
plt.show()
|
65
scan/utils.py
Normal file
65
scan/utils.py
Normal file
@@ -0,0 +1,65 @@
|
||||
# SPDX-License-Identifier: MIT
|
||||
# Copyright (c) 2019 Akumatic
|
||||
|
||||
import math
|
||||
|
||||
def distance (
|
||||
p: tuple,
|
||||
q: tuple
|
||||
) -> float:
|
||||
""" Calculates direct distance between two points given as tuples.
|
||||
|
||||
Args:
|
||||
p (tuple):
|
||||
A tuple containing x and y coordinates
|
||||
q (tuple):
|
||||
A tuple containing x and y coordinates
|
||||
|
||||
Returns:
|
||||
A float with the distance between given points as value
|
||||
"""
|
||||
return math.sqrt((p[0] - q[0])**2 + (p[1] - q[1])**2)
|
||||
|
||||
def find_closest_element (
|
||||
points: list,
|
||||
point: tuple
|
||||
) -> tuple:
|
||||
""" Finds the closes element to a given point
|
||||
|
||||
Args:
|
||||
points (list):
|
||||
A list containing tuples of coordinates (x, y)
|
||||
point (tuple):
|
||||
The (x, y) coordinates of the given point
|
||||
|
||||
Returns:
|
||||
the tuple of the closest point and the distance
|
||||
between the given and closest point
|
||||
"""
|
||||
start, min_dist = None, None
|
||||
for p in points:
|
||||
dist = distance(p[:2], point)
|
||||
if min_dist is None or dist < min_dist:
|
||||
start, min_dist = p, dist
|
||||
|
||||
return start, min_dist
|
||||
|
||||
|
||||
def circularity (
|
||||
area: float,
|
||||
perimeter: float
|
||||
) -> float:
|
||||
""" Calculates the circularity shape factor with given area and perimeter.
|
||||
|
||||
Args:
|
||||
area (float):
|
||||
area of a shape
|
||||
perimeter (float):
|
||||
length of the perimeter of a shape
|
||||
|
||||
Returns:
|
||||
A float with the circularity shape factor as value
|
||||
"""
|
||||
if perimeter == 0:
|
||||
return 0.0
|
||||
return (4 * math.pi * area) / (perimeter ** 2)
|
Reference in New Issue
Block a user