Current state
This commit is contained in:
commit
ceee58a6bc
129
.gitignore
vendored
Normal file
129
.gitignore
vendored
Normal file
@ -0,0 +1,129 @@
|
||||
# Byte-compiled / optimized / DLL files
|
||||
__pycache__/
|
||||
*.py[cod]
|
||||
*$py.class
|
||||
|
||||
# C extensions
|
||||
*.so
|
||||
|
||||
# Distribution / packaging
|
||||
.Python
|
||||
build/
|
||||
develop-eggs/
|
||||
dist/
|
||||
downloads/
|
||||
eggs/
|
||||
.eggs/
|
||||
lib/
|
||||
lib64/
|
||||
parts/
|
||||
sdist/
|
||||
var/
|
||||
wheels/
|
||||
pip-wheel-metadata/
|
||||
share/python-wheels/
|
||||
*.egg-info/
|
||||
.installed.cfg
|
||||
*.egg
|
||||
MANIFEST
|
||||
|
||||
# PyInstaller
|
||||
# Usually these files are written by a python script from a template
|
||||
# before PyInstaller builds the exe, so as to inject date/other infos into it.
|
||||
*.manifest
|
||||
*.spec
|
||||
|
||||
# Installer logs
|
||||
pip-log.txt
|
||||
pip-delete-this-directory.txt
|
||||
|
||||
# Unit test / coverage reports
|
||||
htmlcov/
|
||||
.tox/
|
||||
.nox/
|
||||
.coverage
|
||||
.coverage.*
|
||||
.cache
|
||||
nosetests.xml
|
||||
coverage.xml
|
||||
*.cover
|
||||
*.py,cover
|
||||
.hypothesis/
|
||||
.pytest_cache/
|
||||
|
||||
# Translations
|
||||
*.mo
|
||||
*.pot
|
||||
|
||||
# Django stuff:
|
||||
*.log
|
||||
local_settings.py
|
||||
db.sqlite3
|
||||
db.sqlite3-journal
|
||||
|
||||
# Flask stuff:
|
||||
instance/
|
||||
.webassets-cache
|
||||
|
||||
# Scrapy stuff:
|
||||
.scrapy
|
||||
|
||||
# Sphinx documentation
|
||||
docs/_build/
|
||||
|
||||
# PyBuilder
|
||||
target/
|
||||
|
||||
# Jupyter Notebook
|
||||
.ipynb_checkpoints
|
||||
|
||||
# IPython
|
||||
profile_default/
|
||||
ipython_config.py
|
||||
|
||||
# pyenv
|
||||
.python-version
|
||||
|
||||
# pipenv
|
||||
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
|
||||
# However, in case of collaboration, if having platform-specific dependencies or dependencies
|
||||
# having no cross-platform support, pipenv may install dependencies that don't work, or not
|
||||
# install all needed dependencies.
|
||||
#Pipfile.lock
|
||||
|
||||
# PEP 582; used by e.g. github.com/David-OConnor/pyflow
|
||||
__pypackages__/
|
||||
|
||||
# Celery stuff
|
||||
celerybeat-schedule
|
||||
celerybeat.pid
|
||||
|
||||
# SageMath parsed files
|
||||
*.sage.py
|
||||
|
||||
# Environments
|
||||
.env
|
||||
.venv
|
||||
env/
|
||||
venv/
|
||||
ENV/
|
||||
env.bak/
|
||||
venv.bak/
|
||||
|
||||
# Spyder project settings
|
||||
.spyderproject
|
||||
.spyproject
|
||||
|
||||
# Rope project settings
|
||||
.ropeproject
|
||||
|
||||
# mkdocs documentation
|
||||
/site
|
||||
|
||||
# mypy
|
||||
.mypy_cache/
|
||||
.dmypy.json
|
||||
dmypy.json
|
||||
|
||||
# Pyre type checker
|
||||
.pyre/
|
21
LICENSE
Normal file
21
LICENSE
Normal file
@ -0,0 +1,21 @@
|
||||
MIT License
|
||||
|
||||
Copyright (c) 2019-2020 Akumatic
|
||||
|
||||
Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||
of this software and associated documentation files (the "Software"), to deal
|
||||
in the Software without restriction, including without limitation the rights
|
||||
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||||
copies of the Software, and to permit persons to whom the Software is
|
||||
furnished to do so, subject to the following conditions:
|
||||
|
||||
The above copyright notice and this permission notice shall be included in all
|
||||
copies or substantial portions of the Software.
|
||||
|
||||
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||||
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
||||
SOFTWARE.
|
47
README.md
Normal file
47
README.md
Normal file
@ -0,0 +1,47 @@
|
||||
# ExamScan
|
||||
A Python 3 script to evaluate single and multiple choice exam sheets.
|
||||
|
||||
## Example
|
||||
|
||||
Input image:
|
||||
|
||||

|
||||
|
||||
Processed image:
|
||||
|
||||

|
||||
|
||||
## Usage
|
||||
|
||||
`main.py (-u URL | -f FILE) -n NUM [-h] [-i IOUT] [-d DOUT] [-c COMP] [-p]`
|
||||
|
||||
#### Flags:
|
||||
##### Required, but mutually exclusive flags:
|
||||
| Short | Long | Description |
|
||||
| -- | -- | -- |
|
||||
| -u URL | --url URL | URL to the image or pdf to be evaluated |
|
||||
| -f FILE | --file FILE | path to the image or pdf to be evaluated |
|
||||
|
||||
##### Required flags:
|
||||
| Short | Long | Description |
|
||||
| -- | -- | -- |
|
||||
| -n NUM | --num NUM | number of answers per question |
|
||||
|
||||
##### Optional flags:
|
||||
| Short | Long | Description |
|
||||
| -- | -- | -- |
|
||||
|-h | --help | shows help message and exits |
|
||||
| -i IOUT | --iout IOUT | path for the output picture to be stored. |
|
||||
| -d DOUT | --dout DOUT | path for the output data to be stored. |
|
||||
| -c COMP | --compare COMP | compares the calculated result to a given result |
|
||||
| -p | --plot | plots every single step |
|
||||
|
||||
## Requirements:
|
||||
| Module | Pip | Git |
|
||||
| -- | -- | -- |
|
||||
| OpenCV | [opencv-python](https://pypi.org/project/opencv-python/) | [skvark/opencv-python](https://github.com/skvark/opencv-python) |
|
||||
| NumPy | [numpy](https://pypi.org/project/numpy/) | [numpy/numpy](https://github.com/numpy/numpy) |
|
||||
| Matplotlib | [matplotlib](https://pypi.org/project/matplotlib/) | [matplotlib/matplotlib](https://github.com/matplotlib/matplotlib) |
|
||||
| imutils | [imutils](https://pypi.org/project/imutils/) | [jrosebr1/imutils](https://github.com/jrosebr1/imutils) |
|
||||
| python-magic | [python-magic](https://pypi.org/project/python-magic/) | [ahupp/python-magic](https://github.com/ahupp/python-magic) |
|
||||
| pdf2image | [pdf2image](https://pypi.org/project/pdf2image/) | [Belval/pdf2image](https://github.com/Belval/pdf2image) |
|
BIN
example/test.png
Normal file
BIN
example/test.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 23 KiB |
BIN
example/test_eval.png
Normal file
BIN
example/test_eval.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 132 KiB |
69
main.py
Normal file
69
main.py
Normal file
@ -0,0 +1,69 @@
|
||||
#!/usr/bin/python
|
||||
# SPDX-License-Identifier: MIT
|
||||
# Copyright (c) 2019 Akumatic
|
||||
|
||||
from scan import image, contours, io, eval
|
||||
|
||||
if __name__ == "__main__":
|
||||
# BGR Colors
|
||||
BGR_R = (0, 0, 255)
|
||||
BGR_G = (0, 255, 0)
|
||||
BGR_B = (255, 0, 0)
|
||||
|
||||
# Parse cli args
|
||||
args = io.parse_args()
|
||||
|
||||
# Reads File
|
||||
img = io.read_image(path=args.file, url=args.url)
|
||||
|
||||
# image copies for processing
|
||||
img_orig = img.copy()
|
||||
img_blur = image.blur(img)
|
||||
img_thres = image.threshold(img_blur)
|
||||
img_edges = image.edge_detection(img_thres.copy())
|
||||
|
||||
# gather contour data and find boxes. draws boxes
|
||||
cnts = contours.find_contours(img_edges)
|
||||
cnts_box = contours.find_boxes(cnts)
|
||||
img_boxes = image.draw_contours(img_orig.copy(), cnts_box, BGR_G)
|
||||
|
||||
# retrieve the center of all contours and
|
||||
# filters entries too close to each other.
|
||||
center_boxes = contours.find_center(cnts_box)
|
||||
avg_radius = int(sum([contours.dist_center_topleft(center[2],
|
||||
center[:2]) for center in center_boxes]) / len(center_boxes))
|
||||
contours.filter_centers(center_boxes, avg_radius)
|
||||
|
||||
# Sort Box data
|
||||
#center_boxes = sorted(center_boxes, key=lambda x: (x[1], x[0]))
|
||||
|
||||
# draw center of given contours into original picture
|
||||
img_center_boxes = image.draw_circles(img_orig.copy(), center_boxes, BGR_G)
|
||||
|
||||
img_rad = image.draw_circles(img_thres.copy(), center_boxes, BGR_G,
|
||||
radius=int(avg_radius))
|
||||
|
||||
center_eval = [(center[0], center[1], image.ratio_black(img_thres, center[:2],
|
||||
avg_radius)) for center in center_boxes]
|
||||
|
||||
img_eval = image.eval_image(img_orig.copy(), center_eval, avg_radius)
|
||||
|
||||
evaluation = eval.evaluate(center_eval, args.num, avg_radius)
|
||||
print(evaluation)
|
||||
|
||||
if args.comp is not None:
|
||||
result = eval.compare(evaluation, io.load_results(args.comp))
|
||||
print(result)
|
||||
|
||||
# write result to file if optional flag is given
|
||||
if args.iout is not None:
|
||||
io.write_image(img_eval, args.iout)
|
||||
print(f"Stored image to {args.iout}")
|
||||
|
||||
if args.dout is not None:
|
||||
io.store_results(evaluation, args.dout)
|
||||
print(f"Stored data to {args.dout}")
|
||||
|
||||
if args.plot:
|
||||
io.plot(img_orig, img_blur, img_thres, img_edges,
|
||||
img_boxes, img_center_boxes, img_rad, img_eval)
|
0
scan/__init__.py
Normal file
0
scan/__init__.py
Normal file
117
scan/contours.py
Normal file
117
scan/contours.py
Normal file
@ -0,0 +1,117 @@
|
||||
# SPDX-License-Identifier: MIT
|
||||
# Copyright (c) 2019 Akumatic
|
||||
|
||||
import cv2, imutils, numpy
|
||||
from . import utils
|
||||
|
||||
######################
|
||||
# Contour operations #
|
||||
######################
|
||||
|
||||
def find_contours (
|
||||
image: numpy.ndarray,
|
||||
mode: int = cv2.RETR_LIST,
|
||||
method: int = cv2.CHAIN_APPROX_SIMPLE
|
||||
) -> list:
|
||||
""" Find all contours of the filtered image
|
||||
|
||||
Args:
|
||||
image (ndarray):
|
||||
the filtered image
|
||||
|
||||
Returns:
|
||||
A list containing contour data
|
||||
"""
|
||||
cnts = cv2.findContours(image.copy(), mode, method)
|
||||
return imutils.grab_contours(cnts)
|
||||
|
||||
def find_boxes (
|
||||
contours: list,
|
||||
thres_area: int = 500,
|
||||
pad_ratio: float = 0.05
|
||||
) -> (list, list):
|
||||
""" Find contours that resemble a box
|
||||
|
||||
Args:
|
||||
contours (list):
|
||||
a list containing contour data
|
||||
|
||||
Returns:
|
||||
A list containing the box contours
|
||||
"""
|
||||
boxes = list()
|
||||
for c in contours:
|
||||
area = cv2.contourArea(c)
|
||||
perimeter = cv2.arcLength(c, True)
|
||||
shape_factor = utils.circularity(area, perimeter)
|
||||
|
||||
if 0.7 < shape_factor < 0.85 and area >= thres_area:
|
||||
boxes.append(c)
|
||||
|
||||
return boxes
|
||||
|
||||
def find_center (
|
||||
contours: list
|
||||
) -> list:
|
||||
""" Find the center coordinates of all given contours.
|
||||
|
||||
Args:
|
||||
contours (list):
|
||||
A list containing contour data
|
||||
|
||||
Returns:
|
||||
A list containing the center coordinates and the contour as tuples
|
||||
(x, y, contour).
|
||||
"""
|
||||
centers = []
|
||||
for contour in contours:
|
||||
m = cv2.moments(contour)
|
||||
try:
|
||||
x = int(m["m10"] / m["m00"])
|
||||
y = int(m["m01"] / m["m00"])
|
||||
centers.append((x, y, contour))
|
||||
except ZeroDivisionError:
|
||||
pass
|
||||
return centers
|
||||
|
||||
def filter_centers (
|
||||
coords: list,
|
||||
radius: int
|
||||
):
|
||||
""" Removes all but one entry in circles given by coordinates and radius
|
||||
|
||||
Args:
|
||||
coords (list):
|
||||
a list containing tuples of coordinates (x, y)
|
||||
radius (float):
|
||||
the radius around a center where no other center should be
|
||||
"""
|
||||
a = 0
|
||||
|
||||
while a < len(coords):
|
||||
b = a + 1
|
||||
while b < len(coords):
|
||||
if utils.distance(coords[a][:2], coords[b][:2]) <= radius:
|
||||
del coords[b]
|
||||
else:
|
||||
b += 1
|
||||
a += 1
|
||||
|
||||
def dist_center_topleft (
|
||||
contour: numpy.ndarray,
|
||||
center: tuple
|
||||
) -> float:
|
||||
""" Calculates the distance from the center of a given contour to it's
|
||||
top left corner
|
||||
|
||||
Args:
|
||||
contour (ndarray):
|
||||
The contour data
|
||||
center (tuple):
|
||||
A tuple containing the center coordinates (x, y)
|
||||
|
||||
Returns:
|
||||
A float with the distance from center to the top left corner as value
|
||||
"""
|
||||
x, y, _, _ = cv2.boundingRect(contour)
|
||||
return utils.distance((x, y), center[:2])
|
207
scan/eval.py
Normal file
207
scan/eval.py
Normal file
@ -0,0 +1,207 @@
|
||||
# SPDX-License-Identifier: MIT
|
||||
# Copyright (c) 2019 Akumatic
|
||||
|
||||
from . import utils
|
||||
|
||||
def evaluate (
|
||||
centers: list,
|
||||
n: int,
|
||||
radius: int
|
||||
) -> list:
|
||||
""" Evaluates the given data
|
||||
|
||||
Args:
|
||||
centers (list):
|
||||
contains tuples with coordinates and the black-pixel-ratio
|
||||
(x, y, ratio)
|
||||
n (int):
|
||||
the number of possible answers per question
|
||||
radius (int):
|
||||
the radius of the circle around a box
|
||||
|
||||
Returns:
|
||||
A list containings lists with evaluated answers
|
||||
"""
|
||||
start_of_file, _ = utils.find_closest_element(centers, (0,0))
|
||||
|
||||
# detect distance to next field on the right side
|
||||
point_1 = start_of_file
|
||||
point_r = find_next(centers, point_1, 2* radius, "r")
|
||||
dist_r = utils.distance(point_1[:2], point_r[:2])
|
||||
|
||||
# detect distance to next field below
|
||||
point_d = find_next(centers, point_1, 2 * radius, "d")
|
||||
dist_d = utils.distance(point_1[:2], point_d[:2])
|
||||
|
||||
# detect distance to the next set of answers
|
||||
for i in range(n - 2):
|
||||
point_r = find_next(centers, point_r, dist_r, "r")
|
||||
|
||||
point_3 = find_next(centers, point_r, 3 * radius, "r", max_dist=dist_r)
|
||||
if point_3 is not None:
|
||||
dist_set = utils.distance(start_of_file, point_3)
|
||||
else:
|
||||
dist_set = None
|
||||
|
||||
answers = eval_set(start_of_file, centers, n, dist_r, dist_d)
|
||||
if dist_set is not None:
|
||||
cur = find_next(centers, start_of_file, dist_set, "r", max_dist = radius)
|
||||
while cur is not None:
|
||||
answers += eval_set(cur, centers, n, dist_r, dist_d)
|
||||
cur = find_next(centers, cur, dist_set, "r", max_dist = radius)
|
||||
|
||||
return answers
|
||||
|
||||
def eval_set (
|
||||
start: tuple,
|
||||
centers: list,
|
||||
n: int,
|
||||
dist_r: int,
|
||||
dist_d: int
|
||||
) -> list:
|
||||
""" Evaluates a set of answers
|
||||
|
||||
Args:
|
||||
start (tuple):
|
||||
Containing the coordinates of the top left answer of a set
|
||||
centers (list):
|
||||
contains tuples with coordinates and the black-pixel-ratio
|
||||
(x, y, ratio)
|
||||
n (int):
|
||||
the number of possible answers per question
|
||||
dist_r (int):
|
||||
the horizontal distance between two columns of answers
|
||||
dist_d (int):
|
||||
the vertical distance between two rows of answers
|
||||
|
||||
Returns:
|
||||
A list containing all evaluated data
|
||||
"""
|
||||
result = []
|
||||
result.append(eval_row(start, centers, n, dist_r))
|
||||
|
||||
cur = start
|
||||
while cur != None:
|
||||
cur = find_next(centers, cur, dist_d, "d", max_dist=dist_r / 2)
|
||||
if cur is not None:
|
||||
result.append(eval_row(cur, centers, n, dist_r))
|
||||
return result
|
||||
|
||||
def eval_row (
|
||||
start: tuple,
|
||||
centers: int,
|
||||
n: int,
|
||||
dist_r: int
|
||||
) -> list:
|
||||
""" Evaluates a row of a set of answers with length n
|
||||
|
||||
Args:
|
||||
start (tuple):
|
||||
Containing the coordinates of the top left answer of a set
|
||||
centers (list):
|
||||
contains tuples with coordinates and the black-pixel-ratio
|
||||
(x, y, ratio)
|
||||
n (int):
|
||||
the number of possible answers per question
|
||||
dist_r (int):
|
||||
the horizontal distance between two columns of answers
|
||||
|
||||
Returns:
|
||||
A list containing all evaluated answer data from a given row
|
||||
"""
|
||||
result = []
|
||||
result.append(rate_black_pixel_ratio(start[2]))
|
||||
|
||||
cur = start
|
||||
for i in range(n - 1):
|
||||
cur = find_next(centers, cur, dist_r, "r")
|
||||
result.append(rate_black_pixel_ratio(cur[2]))
|
||||
|
||||
return result
|
||||
|
||||
def rate_black_pixel_ratio (
|
||||
ratio: int,
|
||||
thres_1: int = 20,
|
||||
thres_2: int = 50
|
||||
) -> int:
|
||||
""" Evaluates the given black-pixel-ratio and returns the detected marking.
|
||||
|
||||
Args:
|
||||
ratio (int):
|
||||
the ratio of black pixels compared to total pixels
|
||||
thres_1 (int):
|
||||
threshold for checked boxes
|
||||
thres_2 (int):
|
||||
threshold for corrected boxes
|
||||
|
||||
Returns:
|
||||
-1 if a box is filled
|
||||
1 if a box is checked
|
||||
0 if a box is empty
|
||||
"""
|
||||
if ratio >= thres_2:
|
||||
return -1 # corrected box
|
||||
if ratio >= thres_1:
|
||||
return 1 # checked
|
||||
else: # empty box
|
||||
return 0
|
||||
|
||||
def find_next (
|
||||
centers: list,
|
||||
cur: tuple,
|
||||
dist: int,
|
||||
dir: str,
|
||||
max_dist: int = None
|
||||
):
|
||||
""" Finds the next point in a given direction with a given distance
|
||||
|
||||
Args:
|
||||
centers (list):
|
||||
contains tuples with coordinates and the black-pixel-ratio
|
||||
(x, y, ratio)
|
||||
cur (tuple):
|
||||
the current point
|
||||
dist (int):
|
||||
approximated distance to the next point
|
||||
dir (str):
|
||||
direction of the distance. can be either "r" or "d"
|
||||
max_dist (int):
|
||||
max distance to be allowe
|
||||
|
||||
Returns:
|
||||
returns the next found point.
|
||||
if max_dist is given, returns None if distance > max_dist
|
||||
"""
|
||||
if dir == "r":
|
||||
e, d = utils.find_closest_element(centers, (cur[0] + dist, cur[1]))
|
||||
|
||||
elif dir == "d":
|
||||
e, d = utils.find_closest_element(centers, (cur[0], cur[1] + dist))
|
||||
|
||||
if max_dist is None or d <= max_dist:
|
||||
return e
|
||||
return None
|
||||
|
||||
def compare(
|
||||
data_a: list,
|
||||
data_b: list
|
||||
):
|
||||
""" Compares two sets of evaluated data with the same
|
||||
|
||||
Args:
|
||||
data_a (list):
|
||||
data set A
|
||||
data_b (list):
|
||||
data set B
|
||||
|
||||
Returns:
|
||||
A String "Correct/Total Answers" and the percentage
|
||||
"""
|
||||
# asserts the number of questions is the same
|
||||
assert len(data_a) == len(data_b)
|
||||
cnt = 0
|
||||
for i in range(len(data_a)):
|
||||
if data_a[i] == data_b[i]:
|
||||
cnt += 1
|
||||
|
||||
return (f"{cnt}/{len(data_a)}", cnt / len(data_a) * 100)
|
143
scan/image.py
Normal file
143
scan/image.py
Normal file
@ -0,0 +1,143 @@
|
||||
# SPDX-License-Identifier: MIT
|
||||
# Copyright (c) 2019 Akumatic
|
||||
|
||||
import cv2, imutils, numpy
|
||||
|
||||
def threshold (
|
||||
image: numpy.ndarray,
|
||||
threshold: int = 200,
|
||||
) -> numpy.ndarray:
|
||||
""" Converts given image to black and white
|
||||
|
||||
Args:
|
||||
image (ndarray):
|
||||
the image to be processed
|
||||
threshold (int):
|
||||
the threshold at which every pixel value should be set to 255
|
||||
"""
|
||||
_, img_binary = cv2.threshold(image, threshold, 255, cv2.THRESH_BINARY)
|
||||
return img_binary
|
||||
|
||||
def blur (
|
||||
image: numpy.ndarray,
|
||||
kernel_size: int = 7
|
||||
) -> numpy.ndarray:
|
||||
""" Filters the given picture by converting it to gray scale and
|
||||
applying gaussian blur filter
|
||||
|
||||
Args:
|
||||
image (ndarray):
|
||||
the image to be processed
|
||||
kernel_size (int):
|
||||
the size of the kernel for the gaussian blur
|
||||
|
||||
Returns:
|
||||
A ndarray containing the filtered image
|
||||
"""
|
||||
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
|
||||
return cv2.GaussianBlur(gray, (kernel_size, kernel_size), 0)
|
||||
|
||||
def edge_detection (
|
||||
image: numpy.ndarray
|
||||
) -> numpy.ndarray:
|
||||
""" Applies canny edge detection on a given image
|
||||
|
||||
Args:
|
||||
image (ndarray):
|
||||
the image to be processed
|
||||
|
||||
Returns:
|
||||
A ndarray containing the image after canny detection
|
||||
"""
|
||||
return imutils.auto_canny(image)
|
||||
|
||||
def draw_circles (
|
||||
image: numpy.ndarray,
|
||||
centers: list,
|
||||
color: tuple,
|
||||
radius: int = 3,
|
||||
thickness: int = 2
|
||||
) -> numpy.ndarray:
|
||||
""" Draws the centers of given contures with the given color,
|
||||
(size, thickness)
|
||||
|
||||
Args:
|
||||
image (ndarray):
|
||||
the image to be modified
|
||||
centers (list):
|
||||
a list containing the center coordinates as tuples (x, y)
|
||||
color (tuple):
|
||||
the color coded in BGR color scale
|
||||
radius (int):
|
||||
size of the circles to be drawn
|
||||
thickness (int):
|
||||
thickness of the borders of all circles to be drawn
|
||||
"""
|
||||
for center in centers:
|
||||
cv2.circle(img=image, center=center[:2], radius=radius,
|
||||
color=color,thickness=thickness)
|
||||
|
||||
return image
|
||||
|
||||
def draw_contours (
|
||||
image: numpy.ndarray,
|
||||
contours: list,
|
||||
color: tuple
|
||||
) -> numpy.ndarray:
|
||||
""" Draws the given contours in the given picture with the given color.
|
||||
Args:
|
||||
image (ndarray):
|
||||
the image to be modified
|
||||
contours (list):
|
||||
A list containing contour data
|
||||
color (tuple):
|
||||
the color coded in BGR color scale
|
||||
|
||||
Returns:
|
||||
the modified image as a multidimensional array
|
||||
"""
|
||||
img = cv2.drawContours(image, contours, -1, color, 3)
|
||||
return img
|
||||
|
||||
|
||||
def ratio_black (
|
||||
image: numpy.ndarray,
|
||||
center: tuple,
|
||||
radius: int,
|
||||
) -> int:
|
||||
""" Calculates the ratio of black pixels in a given square area.
|
||||
|
||||
Args:
|
||||
image (ndarray):
|
||||
the image
|
||||
center (tuple):
|
||||
|
||||
radius (int):
|
||||
|
||||
|
||||
Returns:
|
||||
The ratio of black pixels to all pixels
|
||||
"""
|
||||
cnt_black = 0
|
||||
cnt_pixel = 0
|
||||
for x in range(center[0] - radius, center[0] + radius):
|
||||
for y in range(center[1] - radius, center[1] + radius):
|
||||
if image[y, x] == 0:
|
||||
cnt_black += 1
|
||||
cnt_pixel += 1
|
||||
|
||||
return int(cnt_black / cnt_pixel * 100)
|
||||
|
||||
def eval_image (
|
||||
image: numpy.ndarray,
|
||||
data: list,
|
||||
radius: int
|
||||
) -> numpy.ndarray:
|
||||
|
||||
checked = [d[:2] for d in data if d[2] >= 20]
|
||||
corrected = [d[:2] for d in data if d[2] >= 50]
|
||||
|
||||
draw_circles(image, checked, (0,255,0), radius, thickness=4)
|
||||
draw_circles(image, corrected, (255,0,0), radius, thickness=4)
|
||||
|
||||
return image
|
280
scan/io.py
Normal file
280
scan/io.py
Normal file
@ -0,0 +1,280 @@
|
||||
# SPDX-License-Identifier: MIT
|
||||
# Copyright (c) 2019 Akumatic
|
||||
|
||||
import cv2, argparse, numpy
|
||||
|
||||
##############
|
||||
# Exceptions #
|
||||
##############
|
||||
|
||||
class UnsupportedFileType(Exception):
|
||||
pass
|
||||
|
||||
class UnsupportedNumberOfPages(Exception):
|
||||
pass
|
||||
|
||||
class MissingArg(Exception):
|
||||
pass
|
||||
|
||||
####################
|
||||
# Argument Parsing #
|
||||
####################
|
||||
|
||||
def parse_args (
|
||||
) -> argparse.Namespace:
|
||||
""" Parser for cli arguments.
|
||||
|
||||
Returns:
|
||||
A Namespace containing all parsed data
|
||||
"""
|
||||
# The parser itself
|
||||
parser = argparse.ArgumentParser(add_help=False)
|
||||
parser.description = "Evaluates single choice sheets"
|
||||
|
||||
# Groups for ordering arguments in help command
|
||||
grp_req_excl = parser.add_argument_group("required arguments, mutually exclusive")
|
||||
grp_req = parser.add_argument_group("required arguments")
|
||||
grp_opt = parser.add_argument_group("optional arguments")
|
||||
|
||||
#########################
|
||||
##### Required Args #####
|
||||
#########################
|
||||
|
||||
# Input path - either an url or a path to a local file
|
||||
io_grp = grp_req_excl.add_mutually_exclusive_group(required=True)
|
||||
io_grp.add_argument("-u", "--url", dest="url",
|
||||
help="URL to the image or pdf to be evaluated.")
|
||||
io_grp.add_argument("-f", "--file", dest="file",
|
||||
help="path to the image or pdf to be evaluated.")
|
||||
|
||||
# required arg for number of answers each question
|
||||
grp_req.add_argument("-n", "--num", dest="num", required=True,
|
||||
type=_arg_int_pos, help="number of answers per question")
|
||||
|
||||
#########################
|
||||
##### Optional Args #####
|
||||
#########################
|
||||
|
||||
# help message. Added manually so it is shown under optional
|
||||
grp_opt.add_argument("-h", "--help", action="help", help="show this help message and exit")
|
||||
|
||||
# path to store the result picture to
|
||||
grp_opt.add_argument("-i", "--iout", dest="iout",
|
||||
help="path for the output picture to be stored.")
|
||||
|
||||
# path to store the result list to
|
||||
grp_opt.add_argument("-d", "--dout", dest="dout",
|
||||
help="path for the output data to be stored.")
|
||||
|
||||
# path to compare results generated by the program with data stored in a file
|
||||
grp_opt.add_argument("-c", "--compare", dest="comp",
|
||||
help="compares the calculated result to a given result")
|
||||
|
||||
# plotting all steps
|
||||
grp_opt.add_argument("-p", "--plot", dest="plot", action="store_true",
|
||||
help="plots every single step")
|
||||
|
||||
return parser.parse_args()
|
||||
|
||||
def _arg_int_pos (
|
||||
value: str
|
||||
) -> int:
|
||||
""" Trying to parse the input argument into a positive value.
|
||||
|
||||
Args:
|
||||
value (str):
|
||||
The value to be checked
|
||||
|
||||
Returns:
|
||||
The checked and casted value
|
||||
|
||||
Raises:
|
||||
ArgumentTypeError:
|
||||
Raises an ArgumentTypeError if
|
||||
- value is not a number
|
||||
- value is not positive
|
||||
"""
|
||||
try:
|
||||
int_value = int(value)
|
||||
except ValueError:
|
||||
raise argparse.ArgumentTypeError(f"{value} is not a number.")
|
||||
|
||||
if int_value <= 0:
|
||||
raise argparse.ArgumentTypeError(f"{value} is not a positive integer.")
|
||||
return int_value
|
||||
|
||||
#################
|
||||
# File Handling #
|
||||
#################
|
||||
|
||||
def read_image (
|
||||
path: str = None,
|
||||
url: str = None
|
||||
) -> numpy.ndarray:
|
||||
""" Opens the image if file extension is supported.
|
||||
|
||||
Supported file extensions are .jpg, .jpeg, .png and .pdf
|
||||
|
||||
Args:
|
||||
path (String): Path to local file
|
||||
url (String): URL to file
|
||||
|
||||
Returns:
|
||||
A ndarray containing the image data
|
||||
"""
|
||||
# Neither URL nor path provied
|
||||
if url is None and path is None:
|
||||
raise MissingArg
|
||||
|
||||
# Get data and mime type
|
||||
if url:
|
||||
import requests
|
||||
try:
|
||||
response = requests.get(url, stream=True).raw
|
||||
ext = response.headers["Content-Type"].split("; ")[0]
|
||||
except requests.exceptions.ConnectionError as e:
|
||||
raise e
|
||||
|
||||
else: # path
|
||||
import magic
|
||||
try:
|
||||
with open(path, "rb") as f:
|
||||
file = f.read()
|
||||
ext = magic.from_buffer(file, mime=True).split("; ")[0]
|
||||
except FileNotFoundError as e:
|
||||
raise e
|
||||
|
||||
# If file is image or pdf, parse to cv2
|
||||
if ext in ("image/png", "image/jpeg"):
|
||||
if url:
|
||||
data = numpy.asarray(bytearray(response.read()))
|
||||
else:
|
||||
data = numpy.asarray(bytearray(file))
|
||||
|
||||
return cv2.imdecode(data, cv2.IMREAD_COLOR)
|
||||
|
||||
elif ext in ("application/pdf"):
|
||||
import pdf2image
|
||||
if url:
|
||||
images = pdf2image.convert_from_bytes(response.read())
|
||||
else:
|
||||
images = pdf2image.convert_from_bytes(file)
|
||||
|
||||
# only pdf with one page are supported
|
||||
if len(images) != 1:
|
||||
raise UnsupportedNumberOfPages
|
||||
|
||||
data = numpy.asarray(images[0])
|
||||
return cv2.cvtColor(data, cv2.COLOR_RGB2BGR)
|
||||
|
||||
else:
|
||||
raise UnsupportedFileType(ext)
|
||||
|
||||
def write_image (
|
||||
image: numpy.ndarray,
|
||||
path: str,
|
||||
):
|
||||
""" Stores an image to the given path.
|
||||
If the directory does not exist, it tries to create it.
|
||||
|
||||
Args:
|
||||
image (ndarray):
|
||||
the image to be stored
|
||||
path (String): Path for file to be stored
|
||||
"""
|
||||
import os
|
||||
path_abs = os.path.abspath(path)
|
||||
path_dir = os.path.dirname(path_abs)
|
||||
|
||||
if not os.path.exists(path_dir):
|
||||
os.makedirs(path_dir)
|
||||
|
||||
cv2.imwrite(path_abs, image)
|
||||
|
||||
def load_results (
|
||||
path: str
|
||||
):
|
||||
import json
|
||||
with open(path, "r") as f:
|
||||
return json.loads(f.read())
|
||||
|
||||
def store_results (
|
||||
data: list,
|
||||
path: str
|
||||
):
|
||||
import json
|
||||
with open(path, "w+") as f:
|
||||
f.write(json.dumps(data))
|
||||
|
||||
############
|
||||
# Plotting #
|
||||
############
|
||||
|
||||
def plot (
|
||||
orig: numpy.ndarray,
|
||||
blur: numpy.ndarray,
|
||||
thres: numpy.ndarray,
|
||||
edges: numpy.ndarray,
|
||||
boxes: numpy.ndarray,
|
||||
center_boxes: numpy.ndarray,
|
||||
checked: numpy.ndarray,
|
||||
end: numpy.ndarray,
|
||||
):
|
||||
""" Plots up to 8 given data.
|
||||
All Subplot consists of the following:
|
||||
|
||||
- plt.subplot => subplot identifier
|
||||
- plt.xticks, plt.yticks => hide axis labels
|
||||
- plt.title => Title to be shown
|
||||
- plt.imshow => shows given image in the subplot
|
||||
- since opencv image is in BGR, it needs to convert to RGB first
|
||||
"""
|
||||
import matplotlib.pyplot as plt
|
||||
from imutils import opencv2matplotlib
|
||||
idx = 240
|
||||
|
||||
# Subplot y = 1, x = 1
|
||||
plt.subplot(idx + 1)
|
||||
plt.xticks([]), plt.yticks([])
|
||||
plt.title("Original")
|
||||
plt.imshow(opencv2matplotlib(orig))
|
||||
|
||||
# Subplot y = 1, x = 2
|
||||
plt.subplot(idx + 2)
|
||||
plt.xticks([]), plt.yticks([])
|
||||
plt.title("Blur")
|
||||
plt.imshow(opencv2matplotlib(blur))
|
||||
|
||||
# Subplot y = 1, x = 3
|
||||
plt.subplot(idx + 3)
|
||||
plt.xticks([]), plt.yticks([])
|
||||
plt.title("Threshold")
|
||||
plt.imshow(opencv2matplotlib(thres))
|
||||
|
||||
plt.subplot(idx + 4)
|
||||
plt.xticks([]), plt.yticks([])
|
||||
plt.title("Canny Edge")
|
||||
plt.imshow(opencv2matplotlib(edges))
|
||||
|
||||
plt.subplot(idx + 5)
|
||||
plt.xticks([]), plt.yticks([])
|
||||
plt.title("Boxes")
|
||||
plt.imshow(opencv2matplotlib(boxes))
|
||||
|
||||
plt.subplot(idx + 6)
|
||||
plt.xticks([]), plt.yticks([])
|
||||
plt.title("Center of Boxes")
|
||||
plt.imshow(opencv2matplotlib(center_boxes))
|
||||
|
||||
|
||||
plt.subplot(idx + 7)
|
||||
plt.xticks([]), plt.yticks([])
|
||||
plt.title("Areas to be checked")
|
||||
plt.imshow(opencv2matplotlib(checked))
|
||||
|
||||
plt.subplot(idx + 8)
|
||||
plt.xticks([]), plt.yticks([])
|
||||
plt.title("Found corrected and checked boxes")
|
||||
plt.imshow(opencv2matplotlib(end))
|
||||
|
||||
plt.show()
|
65
scan/utils.py
Normal file
65
scan/utils.py
Normal file
@ -0,0 +1,65 @@
|
||||
# SPDX-License-Identifier: MIT
|
||||
# Copyright (c) 2019 Akumatic
|
||||
|
||||
import math
|
||||
|
||||
def distance (
|
||||
p: tuple,
|
||||
q: tuple
|
||||
) -> float:
|
||||
""" Calculates direct distance between two points given as tuples.
|
||||
|
||||
Args:
|
||||
p (tuple):
|
||||
A tuple containing x and y coordinates
|
||||
q (tuple):
|
||||
A tuple containing x and y coordinates
|
||||
|
||||
Returns:
|
||||
A float with the distance between given points as value
|
||||
"""
|
||||
return math.sqrt((p[0] - q[0])**2 + (p[1] - q[1])**2)
|
||||
|
||||
def find_closest_element (
|
||||
points: list,
|
||||
point: tuple
|
||||
) -> tuple:
|
||||
""" Finds the closes element to a given point
|
||||
|
||||
Args:
|
||||
points (list):
|
||||
A list containing tuples of coordinates (x, y)
|
||||
point (tuple):
|
||||
The (x, y) coordinates of the given point
|
||||
|
||||
Returns:
|
||||
the tuple of the closest point and the distance
|
||||
between the given and closest point
|
||||
"""
|
||||
start, min_dist = None, None
|
||||
for p in points:
|
||||
dist = distance(p[:2], point)
|
||||
if min_dist is None or dist < min_dist:
|
||||
start, min_dist = p, dist
|
||||
|
||||
return start, min_dist
|
||||
|
||||
|
||||
def circularity (
|
||||
area: float,
|
||||
perimeter: float
|
||||
) -> float:
|
||||
""" Calculates the circularity shape factor with given area and perimeter.
|
||||
|
||||
Args:
|
||||
area (float):
|
||||
area of a shape
|
||||
perimeter (float):
|
||||
length of the perimeter of a shape
|
||||
|
||||
Returns:
|
||||
A float with the circularity shape factor as value
|
||||
"""
|
||||
if perimeter == 0:
|
||||
return 0.0
|
||||
return (4 * math.pi * area) / (perimeter ** 2)
|
Loading…
x
Reference in New Issue
Block a user